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Abstract-A theoretical and experimental study of turbulent forced convection between two parallel plates, 
subjected to a sinusoidally varying inlet temperature, is presented. The previous work on laminar flow is 
extended to a more realistic situation, turbulent flow, since most of the flows in practice are generally in 
the turbulent regime. A boundary condition which accounts for the effects of both external convection and 
wall thermal capacitance is considered. The analytical solution is obtained through extending the gener- 
aimed integral transform technique. An experimental apparatus was designed, built and used for the 
experimental study to provide validation of the mathematical modeling employed. Analytical solutions are 
compared with the experimental findings. A satisfactory agreement is obtained when the non-uniform 
inlet temperature amplitude profile obtained experimentally is incorporated into the theoretical model. 
Furthermore, the effects of the modified Biot number, the fluid-to-wall thermal capacitance ratio and the 
Reynolds number on the temperature amplitude along the channel are also discussed for turbulent flow. 

iNTRODUCTlON 

UNSTEADY forced convection is an important branch 
of heat transfer research and technology. Ducts are 
generally the basic parts of a heat exchanger that may 
be exposed to many planned or unplanned transients. 
In thermal equipment, unsteady behavior of tem- 
perature distribution in heat exchange equipment can 
produce such undesirable effects as reduced thermal 
performance and severe thermal stress with eventual 
mechanical failure. In practice, most of the flows in 
the thermal exchange equipment are turbulent. Thus, 
it is very important to know the unsteady response of 
turbulent flow in order to avoid reduction in thermal 
performance and/or mechanical failures. 

Sparrow and De Farias [l] analyzed the periodic 
forced convection with slug flow in a parallel-plate 
channel with sinusoidally varying inlet temperature 
and time- and space-dependent wall temperature. The 
wall temperature was dynamically determined by con- 
sidering both the heat transfer rate and the energy 
storage. Kaka(; and Yener [2] obtained an exact solu- 
tion to the transient energy equation for laminar slug 
flow in parallel plate channel with a sinusoidal vari- 
ation of fluid inlet temperature. Kakag [3] obtained a 
general solution of the energy equation of unsteady 
forced convection for the decay of a time varying 
inlet temperature for fully developed turbulent flow 
between two parallel plates. Cotta and ijzisik [4] stud- 
ied laminar forced convection with periodic variation 

- 
tDedicated to Prof. J. P. Hartnett on his 70th birthday. 

of inlet temperature analytically, in which they intro- 
duced the lowest order solution. Later, the previous 
work ]4] is extended to a more general boundary con- 
dition which accounts for the external convection and 
heat storage of the wall. Good agreement between 
experimental findings and the analytical solution was 
obtained [5]. Recently, a theoretical analysis of tur- 
bulent forced convection inside parallel-plate channel 
with periodic variation of inlet temperature under the 
constant wall temperature boundary condition has 
been discussed and solved by using the lowest-order 
solution [6]. 

In the present paper, the tem~rature amplitudes 
for different Reynolds numbers along the centerline 
of the channel were experimentally measured. A 
model considering both external convection and wall 
thermal capacitance was established for unsteady tur- 
bulent forced convection subjected to sinusoidally 
varying inlet temperature. The analytical solutions 
and the experimental findings were compared to pro- 
vide validation of the mathematical approach 
employed. Furthermore, the effects of the modified 
Biot number (Bz), the fluid-to-wall thermal capaci- 
tance ratio (a*) and Reynolds number (Re) on the 
temperature amplitude along the channel are also dis- 
cussed for turbulent flow. 

FORMULATION AND METHOD OF SOLUTION 

Governing equation and boundary conditions 
Let us consider unsteady turbulent forced con- 

vection inside a parallel-plate channel, with a hydro- 
dynami~lly fully developed turbulent flow. The inlet 
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NOMENCLATURE 

a thermal diffusivity of the fluid [m’ s-‘1 
u* fluid-to-wall thermal capacitance ratio, 

(PC,)p’l(P&L 
* 

ank element of matrix A, equation (12b) 

A N x N matrix, equation (12b) 

A([,q) dimensionless temperature amplitude, 
equation (17) 

A flk coefficient, equation (1 I b) 
Bi modified Biot number, h,d/k 

c’, C, specific heat [J kg- ’ K _ ‘1 

cll coefficient, equation (13) 
d half distance between parallel plates, or 

diameter of thermocouple probe [m] 

D, equivalent diameter of rectangular duct 

j; EZstant, equation (14) 

Sk function, equation (15b) 

h heat transfer coefficient outside the wall 
IWm~‘K~‘] 

/I, equivalent heat transfer coefficient, 
(lh+L/k,,) ’ [W m-l K -‘I 

h Ill heat transfer coeficient around the 
thermocouple probe [W m ’ K ‘1 

i imaginary number, j( - 1) 

Im imaginary part of the complex value 
k thermal conductivity [W mm ’ K ‘1 or 

integer number 
L thickness of the wall [m] 

n integer 
N number of terms in series 

N,, norm of the eigenfunction Y,,(q), 

equation (SC) 
Pr Prandtl number, v/u 

Re Reynolds number, U,D,/v, or real part 

V volume of thermocouple probe [m’] 
x axial coordinate [m] 
X dimensionless axial coordinate, x/DC 

.I’ normal coordinate [m] 
Y,(q) eigenfunction corresponding to nth 

eigenvalue, equation (8). 

Greek symbols 

Ir inlet frequency [Hz] 

L, 6 function, for n = k, 6,, = 1 ; for n # k, 

6,* = 0 

AT(V) inlet temperature amplitude profile 

AT, temperature amplitude at the center of 
the inlet 

A@(q) dimensionless inlet temperature 
amplitude profile, ATb)/AT, 

&!I dimensionless function, I + a,/a 

Em turbulent eddy viscosity [m s-‘1 

V dimensionless normal coordinate, y/d 

0(54,7) dimensionless temperature, 
(T- T,)/ATc 

0: kth eigenvector of the matrix 

eigenproblem (12) 

A,> nth eigenvalue of equation (8) 

& nth eigenvalue of matrix A 

5 dimensionless axial coordinate. 

(,~iD,)(D,/&/(RePr) 
5 dimensionless time, at/d2 

7* time constant of thermocouple, [s ‘1 

~(C,V) function, equation (5) 
(p(Q,<) phase lag, equation (17) 
Yk(t) function, equation (9b) 

n dimensionless inlet frequency, 27-&i*/a. 

of the complex value 
S surface area of thermocouple probe Subscripts 

[m’l C centerline of the channel 

t time [s] f working fluid (air) 

T temperature [“Cl t turbulent flow 

u(_v) fully developed velocity profile [m s-‘1 th thermocouple material 

U(q) dimensionless velocity profile, ub)/U”, W wall 

u, mean velocity [m s- ‘1 E value at the ambient. 

temperature is subjected to a periodic variation. The 
geometry for the theoretical analysis is shown in Fig. 
1. The conduction along the flow (x-direction) in the 
wall material is disregarded, and constant fluid ther- 
mophysical properties are assumed. The energy equa- 

I +t 

f 
FIOW 2d 

-.-.__- 

Unheated Periodic Heat Input 

enfry reqion 

I 

FIG. 1. Geometry of the duct for theoretical analysis. 

tion governing the diffusion in the y-direction and the 
convection in the x-direction can be written as : 
^I 
g+uo;;= $+4g] 

for O<y<d, x>O, t>O (la) 

with inlet and boundary conditions at the center of 
the channel, as : 

T(O,y,t) = T, + A TCJ)e”‘@, 

for O<y<d. t>O, (lb) 

- = 0, at y = 0, for x > 0, t > 0. (lc) 
aY 
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With the assumption of uniform wall temperature 
across the whole thickness of the wall material, the 
boundary condition considering both external con- 
vection and wall heat storage may be expressed as : 

at y = d, for x > 0, t > 0. (Id) 

Introducing the following dimensionless par- 
ameters, as : 

at 
) z = Ji’ 

Bi = bid, 2nfid= 
Q=-- 

a ’ 
a* =f$f$, (2a) 

w 

e(t,rl,~) = 
T(x,YJ) - L 

AT > (2b) 
c 

the governing equation, inlet and boundary con- 
ditions can be rewritten in dimensionless form as : 

for 0 < fj < 1, 5 > 0, T > 0 (3a) 

0(O,q,z) = AO(q)eln’, for 0 < q < 1, 7 > 0 

(3b) 

as 
~ = 0, 
as 

at q 0, for = 5 > 0, 7 > 0, (3~) 

where 

BiH+E+‘?= 0, at r] = 1, 
ag a*as 

for 5 > 0, 7 > 0 (3d) 

E&J)= 1+%= 1+;; 
t 

in which E, is turbulent eddy viscosity, as predicted 
by a turbulence model. The fully developed turbulent 
velocity distribution U(q) given in ref. [7] and the 
turbulent eddy viscosity E, given in ref. [8] are used in 
the present analysis (see the Appendix). 

Note that if the wall heat capacitance is negligible 
compared to the fluid thermal capacitance, a* 
becomes a very large number, and the conductance 
in h, diminishes. Consequently, the contribution of 
(l/a*)(a0/az) becomes very small in equation (3), and 
the boundary condition (3d) reduces to the regular 
third kind of convective boundary condition. 

A periodic solution of the form 

O(h,7) = einT4(5,i?) (5) 

is assumed for the decay of the inlet condition along 

the channel. The initial condition is not needed since 
only the ‘steady’ portion of the temperature response, 
4(&q), is of interest. Then, equations (3) can be sim- 
plified as : 

for O<q<l, l>O, z>O (6a) 

$(O,q) = A@(q), at 5 = 0, for 0 < PJ < 1 

(6b) 

(6d) 

where a dimensionless inlet temperature amplitude, 
A&q) determined experimentally as : 

A&/) = 1.035+0.098~- 1.04~~ (7) 

is coupled in the theoretical analysis. 

Methods of solution 
A formal solution to the above problem by using 

the classical integral transform technique leads to a 
complex non-classical Sturm-Liouville problem for 
which no direct known solution is available. Based on 
the generalized integral transform technique [4,5], the 
same method will be extended for solving turbulent 
forced convection for timewise variation of inlet tem- 
perature. Let us consider the following eigenvalue 
problem : 

for 0 < rj < 1 @a) 

dY 
“=O, at PJ=O 
d? 

BiY,+d=O, at q=l, 
d? 

where Y,,(q) is the eigenfunction corresponding to the 
nth eigenvalue 1,. Equations (8) allow the definition 
of an integral-transform pair for the function 4((,~) 
given by : 

in which the normalization integral is defined as : 

N, = s WI) Y,ZWv. (9c) 
0 

Multiplying equation @a) with [ Y,(q)/,/N,], then inte- 
grating with respect to q from 0 to 1, one can obtain 
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and the constants c,, could be determined by con- 
straining this solution to satisfy the inlet condition. 
as : 

(14) 

By using equations (6d) and (Xc), the following 
relationship can be established : 

Using the expression of @(<,q), equation (9a), it has 

Substituting the above relation into equation (lo), the 
differential equation for ‘P,(e) can be written as : 

dY, ’ 
25. + C (6,ki,Z+i~Ank)YI. = 0, (lla) 

I- I 

where 

+ 
J 
’ Yn(v)Y,tpl)dv 

> 
. (llb) 

0 

After performing the same operation for the inlet 
condition, the following equation can be obtained : 

Y,(O) = + I’ ~(~)A~(~) Yn(dd~ = .A. ( 1Ic> t/’ 11 0 
Equations (11) form a set of infinite, coupled, first- 
order linear ordinary differential equations. As dis- 
cussed in ref. [9], it can be truncated to any sufhciently 
large order, N, and solved to any desired accuracy. 

Let p/, and { 07, UT, . , O,$} express the eigenvalues 
and eigenvectors for the N x N coefficient matrix A, 
which are determined by the following linear algebra 
equations, 

(A -‘l&I)&! = 0 (12a) 

where I is an N x N unit matrix, and 

A = (a,$), and u,l;- = 6,,1.~+ i(;ZA,+. (12b) 

By knowing the eigenvalues and corresponding eigen- 
vectors of matrix A, the general solution of equations 
(11) may be constructed from the linear combination 
of N independent solutions, as : 

Yn(<) = i c$,+ke-@J, (n = I,2 ,...) N), (13) 
i: -~ , 

where 0,; is the kth component of the nth eigenvector, 

It should be noted that for small values of ct* the 
diagonal elements in the matrix A could be the same 
order as AZ, i.e. the diagonal elements are no longer 
dominant in the matrix eigenvalue problem. In this 
case. the lowest order solution suggested in ref. [6] 
may not be valid. Then the solution for (p(<,q) can be 
expressed by the inversion formula, equation (9a), as : 

(15b) 

Finally, the expression of the dimensionless tem- 
perature may be written as : 

U(&r) = P’ ,T, a(v) e “A‘. (‘6) 

Note that the eigenvalues pi and the functions gk(q) 
(k = 1,2, . . . , N) are complex ; therefore, the solution 
of f?(t,~,r) is also complex. The final solution will only 
be the real (or imaginary) part of the above solution, 
given as, 

= A(5,V) cos [Or + p(Q, <)I (17) 

where the dimensionless temperature amplitude, 
A(t,q), and the phase lag of the dimensionless tem- 
perature, G&R,@, may be defined as : 

A(i”,q) = ~‘~~=(#)]*+[~~(~)12. for ; > 0. 

o<r/< 1 (18a) 

, IN+) 
(p(C&t) = tan ~ 

Re(4)’ 
(lgb) 

A computer program using the general integral 
technique is constructed, and the analytical results are 
compared to the experimental findings. 

EXPERIMENTS 

Experimentaf set-up 
An experimental set-up has been designed, built 

and used to study the behavior of unsteady laminar 
and turbulent forced convection between the parallel- 
plate channel with sinusoidally varying inlet tem- 
perature. A schematic diagram of the apparatus with 
the basic components and instrumentation is shown 
in Fig. 2. 

To simulate the parallel-plate channel, a rec- 
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FIG. 2. Schematic diagram of experimental set-up. 

tangular duct with the aspect ratio 10 (254.0x25.4 
mm*, or 10 x 1 in.*) is constructed. For validation of 
the theoretical analysis used, in the experiments, only 
the fluid temperature variation along the centerline of 
the channel is investigated. The experimental findings 
obtained are used to compare with the theoretical 
analyses for the parallel-plate-channel. With the avail- 
able components, it is possible to work with inlet 
frequencies from 0.01 to 0.20 Hz. The Reynolds 

number based on the hydraulic diameter of the chan- 
nel is varied from 400 to 2000 in laminar flow and 
from 4000 to 20 000 in turbulent flow regimes. 

The main component of the apparatus is the rec- 
tangular channel with different sections for filtering, 
calming, entrance, testing, and convergence. The 

experimental apparatus is operated in the suction 
mode in order to provide smooth air flow. The instru- 
mentation includes a wave generator, a power supply, 
a heater, an inclined manometer, voltmeters, ther- 
mocouples, an orifice plate and a fan. 

Air flows from the calming section to the inlet sec- 
tion (2770 mm in length) where the velocity becomes 
fully developed. The duct is constructed with an outer 

casing made from 6.35 mm (l/4 in.) thick plywood 
with outer dimensions of 114.3 mm x 381 mm x 4670 
mm and incorporate the inlet and test sections. The 

inner surface of the casing is lined with 25.4 mm thick 
extruded Styrofoam, leaving a cross-sectional flow 
area of 254 x 25.4 mm* (10 x 1 in.‘). To ensure a 

hydraulically smooth surface, the styroform surface 
has been painted carefully. 

Throughout the study, periodic variation of heat 
input is provided by an electric heater constructed to 

fit into the channel. In order to minimize the dis- 
turbance to the air flow, a 0.4 mm diameter nichrome 
resistance wire is used as the heating element. The 
sine variation of heat input to the heater at various 
frequencies is provided by a function generator and 
the power supply. To measure the temperature vari- 
ation along the channel, 14 thermocouples are placed 
at equal intervals along the test section starting at the 

exit of the electric heater. The thermocouples are made 
from 0.01 in. (0.254 mm) diameter, 30 gage, Teflon- 
coated chrome1 and constantan (E-type) ther- 
mocouple wires, and calibrated in the Heat Transfer 
Laboratory. 

Experimental uncertainty 
Steady temperature measurement. The measure- 

ments made with the E-type thermocouple usually 
have an uncertainty of +O.l”C within the range of 
0 to 100°C after careful calibration. 

Unsteady temperature measurement. As discussed in 
ref. [lo], it is known that when the fluid temperature 
varies with time, the response of the thermocouple 
depends upon the physical properties of the ther- 
mocouple material and the dynamic properties of the 
surrounding environment. For the ideal sphere ther- 

mocouple probe, the unsteady temperature, T, has the 
following relation with the reading temperature (or 

measuring temperature), Tread : 

in which 

T = [l +(2npz*)‘]Tread (19) 

where pt,, and C,, are the density and specific heat of 
the thermocouple material, respectively ; h,, is the heat 
transfer coefficient around the thermocouple probe ; 
Vthr St, and dth are the volume, surface area and the 
diameter of the thermocouple probe, respectively ; T 
is the real fluid temperature, and Tread is the reading 

temperature of the fluid. 
It implies that the fluid temperature measurement 

in our experiments depends upon the frequency of the 
periodic variation (b) and the time constant of the 
thermocouple (z*). For an E-type thermocouple con- 
structed with 0.01 in. diameter chrome1 and con- 
stantan wires and 0.03 in. diameter sphere probe, the 
time constant z* is less than 3 x 10e3 s in our experi- 
ments. Therefore, the difference between real tem- 
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perature (r) and reading temperature (Tread) could be 
safely neglected. For the high frequency, the dynamic 
effect of the thermocouple probe may not be negli- 
gible, and the fluid temperature should be corrected 
according to equation (19). 

Muss ,flou rate calculation. The uncertainty associ- 
ated with the mass flow rate is calculated as &2.64% 
according to ASME Standard [I I]. 

For each data run, both temperature oscillation 
frequency (/?) at inlet and the Reynolds number (Re) 
are fixed. but they are adjustable in the entire experi- 
ment. First, the pressure drop across the orifice plate 
can be adjusted to the desired range, and the inlet 
frequency can be stabilized on the selected value. After 
turning on the electric heater, temperature amplitudes 
at various locations should be checked until they are 
not changing with time. Then, at a fixed value of 
Reynolds number and a given inlet frequency, the 
oscillation of temperature along the channel as a func- 
tion of time and the temperatures before and after the 
orifice plate can be recorded by thermocouples. 

After the completion of data recordings, the inlet 
frequency is reset to the next desired value. All tem- 
peratures and pressure drop will be remeasured until 
the steady temperature amplitude is reached. After all 
desired inlet frequencies are carried out, the experi- 
ments for another desired pressure drop across the 
orifice plate (Reynolds number) will be repeated. 

RESULTS AND DISCUSSIONS 

Temperature response 
During the experiments, the temperature at the 

entrance is specified as a sinusoidal oscillation, as 
shown in the recordings, Fig. 3. The amplitude of 
temperature oscillations along the centerline of the 
channel is obtained from the maximum and minimum 
values of the oscillating temperature converted from 
the maximum and minimum of the oscillating ther- 
mocouple readings by a high accuracy voltmeter (T,,, 
and T,,,,). The temperature amplitude AT is defined 

as 

The variation of the temperature amplitude along 

the centerline of the channel is recorded at different 
locations for a given Reynolds number. Figure 3 
shows the typical thermocouple temperature response 
for the oscillating inlet temperature in the thermal 
entrance region. It can be seen that the temperature 
responses downstream along the channel at different 
locations are also sinusoidal variations and they have 
the same frequency as that at the inlet. 

Inlet temperature amplitude pro$le 
Since the inlet temperature amplitude is a very 

important factor that affects the theoretical analysis, 
we measured the inlet temperature amplitude profile 

experimentally and rechecked the construction of the 
electric heater. From the measurements, it is known 
that the inlet temperature amplitude is not uniform 
across the channel. 

In Fig. 4, the experimentally measured dimen- 
sionless inlet temperature amplitude for turbulent 
Aow is plotted. The equation (7) presented on the plot 
as a description of the inlet temperature amplitude 
profile is obtained by using a least square method to 
fit the experimental results. In order to compare the 
experimental findings with the analytical results, the 
experimental inlet temperature amplitude profile is 
employed in the theoretical analyses. 

Dimensionless temperature amplitudes 
The dimensionless temperature amplitudes along 

the centerline of the channel are dalculated for the 
parameters Bi = 10, a* = 8.5 x IO- 3 and /3 = 0.04 and 
0.08 Hz, which are specified by experimental 
conditions. Some theoretical dimensionless tem- 
perature amplitudes and the corresponding exper- 
imental results along the centerline of the channel for 
turbulent flow (Re =: 8900-20 000) are plotted in Figs. 
5 and 6. The theoretical solutions for the assumed 
constant inlet temperature profile and the measured 
parabolic inlet temperature profile are presented. As 
seen in Figs. 5 and 6. the experimental data and theor- 
etical analysis are in acceptable agreements. In the 
experiments, especially in turbuIen~ regime, the tem- 
perature amplitude usually drops below 3°C [lo]. 
With the accuracy of 0.1 ‘C in temperature measure- 
ment for the E-type thermocouples. the relative error 
of temperature measurement will be &l/3 = 3.3%. 
As .x/D, further increases, the temperature amplitude 
continuously decreases, so the relative error of tem- 
perature measurement will increase. Besides the exper- 
imental approximations, theoretical assumptions and 
the accuracy of the simple turbulent model may be 
the major cause of the small consistent deviation 
between the expe~men~l and numerical analyses. In 
another way, the scale of the vertical coordinate on 
the plots is logarithmic, which makes the deviation 
look bigger than its real value. The maximum devi- 
ation, in our experimental range, between the exper- 
imental findings and analytical dimensionless tem- 
perature amplitudes with the experimental inlet 
temperature amplitude is usually less than 0.10. This 
is quite satisfactory for the simple turbulent mode1 
used in the theoretical study. It is also shown that the 
effect of a non-uniform inlet temperature profile is 
quite significant in bringing the theoretical and exper- 
imental results to an acceptable agreement. 

It is seen from Figs. 5 and 6 that the Reynolds 
number (Re) is one major factor which affects the 
variation of the temperature amplitude. Generally, 
the temperature amplitude decays exponentially along 
the distance from the inlet except at the locations very 
close to the inlet. For a given inlet frequency (p), 
the temperature amplitude depends strongly upon the 
Reynolds number (Re). If the Reynolds number 
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time scale: 4.0 sec./mm time scale: 0.5 s/mm 

FIG. 3. Experimental results of temperature response at different locations along the centerline of the duct. 

increases, the decay of the temperature amplitude will 

decrease. For higher Reynolds numbers (Re), the rate 
in decrease of temperature amplitude along the chan- 
nel (the slope of the amplitude curve vs x/D,) will be 
reduced. 

1.2 
8 0 1 

.y 
Iz 

0 
0.2 0 

= 
Re RC = 15437 16874 

6 - - 1035t0.0981Y1d~-1.0401~ld~2 \ A 
8 

0.0 

1 

0.00 0.25 0.50 0.75 1.00 

Y/d 

FIG. 4. Experimental dimensionless inlet temperature ampli- 
tude profile for turbulent flow. 

From the temperature amplitude comparison in 
turbulent flow, it may be concluded that the model of 
turbulence and the method of calculation are accept- 
able to predict the temperature distribution inside the 
channel and the decay of the temperature amplitude 
along the duct for a timewise varying inlet temperature 
in the turbulent thermal entrance region. 

FIG. 5. Variation of the amplitude of the dimesionless tem- 
perature along the centerline of the duct for Re = 15430, 

Pr = 0.7 and fi = 0.08 Hz. 
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FIG. 6. Variation of the amplitude of the dimensionless tem- 
perature along the centerline of the duct for Re = 19570, 

Pr = 0.7 and fi = 0.08 Hz. 

In Fig. 7, the results of phase lags of the centerline 
temperature along the channel, 1(p(Q,[), are pre- 
sented for different values of inlet frequencies (a) at 
Reynolds number Re = 20000 and a* = 8.5 x lo- j. 

One can see that the phase lag increases with increase 
in the dimensionless inlet frequency. Because of the 

difficulty in measuring the phase lag experimentally, 
only the numerical values of phase lag are reported. 

Further discussion qf the @ect of Bi, (I* and Re on 

the temperature amplitudes 

For turbulent flow, the modified Biot number (Bi) 

and thermal capacitance ratio (a*) will affect the tem- 
perature amplitude, and have more complicated 
influence than that for laminar flow [9]. In addition 
to the parameters of Bi and a*, the Reynolds number 

(Re) will also affect the temperature amplitude vari- 
ation even when the amplitude is plotted against the 
so-called dimensionless axial coordinates 5 = (.x/D,) 

(D,/d)‘/(RePr). For turbulent flow the dimensionless 
temperature amplitude variation is no longer a 
straight line in the semilog plots, since the eddy vis- 

cosity (E,) and eddy diffusivity (E,,), which dominate 
the heat and momentum transport, are the functions 
of the Reynolds number. Thus, the basic dimen- 
sionless governing equation depends on the Reynolds 
number (Re), while it is identical for laminar flow. 

In Fig. 8, the effects of modified Biot number on 
the temperature amplitude along the centerline of the 
channel are plotted vs the dimensionless axial 

distance, [ = (s/De)(D,/d)‘/(RePr). Figure 8 gives the 
variation of the temperature amplitude for different 

_ ." 
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FIG. 7. The phase lags of the dimensionless temperature along 
the centerline of the duct for different values of dimensionless 

inlet frequency. 

FE. 8. The effect of modified Biot number (Bi) on dimen- 
sionless temperature amplitude along the centerline of the 
channel for Re = 10’. U* = 8.5x IO-’ and 0 = 1.0 in tur- 

bulent flow. 

Bi(=0.1,10and50)with~=1.0andRe=10hand 
a* = 8.5 x 10m3. It is seen that for the fixed value of 
a* ( = 8.5 x lo-‘), the effect of Bi number on dimen- 
sionless temperature amplitude variation is not ncg- 

ligible. The dimensionless temperature amplitudes are 
very sensitive to the external convection, because in 
turbulent flow much more heat is transferred across 
the channel and could be stored inside the walls. 
Generally, in turbulent flow the effect of Bi is more 

complicated than that in laminar flow because of the 
dependance on the Reynolds number, therefore, it is 
almost impossible to give the limit of a*, which can 

separate whether the effect of Bi could be neglected 
or not, as for laminar flow [9]. 

Figures 9 and 10 illustrate the effects of fluid-to- 

FIG. 9. The effect of fluid-to-wall thermal capacitance ratio 
(a*) on dimensionless temperature amplitude along the cen- 
terline of the channel for Re = 105, Bi = 1 .O and 0 = 1 .O in 

turbulent flow 

01 75 

FIG. 10. The effect of fluid-to-wall thermal capacitance ratio 
(a*) on dimensionless temperature amplitude along the cen- 
terline of the channel for Re = 105, Bi = 10.0 and Q = 1 .O in 

turbulent flow. 
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wall thermal capacitance ratio (a*) on the temperature 
amplitudes along the centerline of the channel for 
Bi = 1.0 and Bi =*lO with R = 1.0 and Re = 105. It is 
known that for large wall thermal capacitances (small 
values of a*), the storage of the heat inside the wall is 
dominant compared to the heat transferred to the 
outside by external convection, therefore, the tem- 
perature amplitude decays quickly. For the small 
values of modified Biot number (Bi), the temperature 
amplitude is more sensitive to the thermal capacitance 
ratio (a*) ; the differences between the temperature 
amplitude for different a* are larger than the cases for 
large values of Bi. For the large value of Bi (Bi = lo), 
the heat carried by the external convection and the 
heat stored inside the wall are of the same order, the 
influence of a* is not as strong as that for the small 
values of Bi. Combining the good external convection 
(large value of Si) and the thermal storage of the wall 
(small value of a*), the temperature amplitude decays 
more rapidly than it does for the small value of Bi. 
see Fig. 9. 

As mentioned above, for different Reynolds num- 
bers (Re), the curve of the temperature amplitude vari- 
ation vs the so-called dimensionless axial coordinate 
5 = (x/D,)(D,/d)‘/(RePr), will not be identical. Figure 
11 shows the variation of temperature amplitude for 
different values of Re at the same external convective 
condition (Bi = 10) and the thermal capacitance ratio 
a* ( = 8.5 x IO-‘). According to the study, the effect 
of the Reynolds number (Re) on the temperature 
amplitudes for the large values of a* (>O.l) is very 
similar to Fig. 10. It can be seen that the temperature 
amplitude along the channel for the high Reynolds 
number is less than the amplitude for the lower Reyn- 
olds number. For the higher Reynolds number, the 
heat transferred from the flowing fluid to the wall and 
then carried by external convection is larger than that 
for the lower Reynolds number; therefore, in tur- 
bulent flow the temperature amplitude for higher 
Reynolds number is lower than that for lower Reyn- 
olds number. However, it is shown that the influence 
of the Reynolds number on the amplitude for larger 
values of Bi is mote significant than that for smaller 
values of Bi. 

0.8 

0.6 

FIG. 11. The effect of Reynolds number (Re) on dimen- 
sionless temperature amplitude along the centerline of the 
channel for a* = 8.5 x 10m3, Bi = 10.0 and R = 1.0 in tur- 

bulent flow. 

It may be concluded that the heat transport in tur- 
bulent flow is much stronger than that in laminar flow, 
thus more heat is transferred from the flowing fluid 
to the wall. Obviously, the heat balance between the 
wall and external ambient strongly depends on exter- 
nal convection (Br]. For the small values of Bi and a*, 
the heat stored inside the wall is dominant and the 
influence of the a* is more effective. For the targe 
value of Bi and small value of a*, the heat carried by 
external convection and stored inside the wall are of 
the same order, the effect of the a* is not so strong as 
that for the small value of Bi, but the effect is still 
observable. Generally, for the higher Reynolds 
number, the eddy diffusivity (a,,) has a larger value, 
therefore, the effects of Bi and u* for higher Reynolds 
number are more evident. 

CONCLUDING REMARKS 

The temperature responses and decays of the sinus- 
oidal variation of the inlet temperature along a par- 
allel plate-channel ate investigated experimentally and 
theoretically for various values of Reynolds number 
(Re), modified Biot number (Bi) and fluid-to-wall 
thermal capacitance ratio (a*). From the above exper- 
imental and theoretical investigations and analysis, 
the following conclusions are deduced for unsteady 
turbulent forced convection in the thermal entrance 
region for periodically varying inlet temperature. 

(I) The periodic nature of the temperature oscil- 
lations along the channel has the same frequency as 
at the inlet. Generally, the unsteady temperature dis- 
tribution depends on inlet frequency (fl), the Reynolds 
number (Re), the fluid-to-wall thermal capacitance 
ratio (o*) and the modified Biot number (Bi). 

(2) The present model and calculation procedure 
are acceptable to predict the temperature dist~bution 
inside the channel and the decay of the temperature 
along the channel for timewise varying inlet tem- 
perature in turbulent thermal entrance region. The 
experimental results and theoretical analyses are in 
acceptable agreement. 

(3) For a given value of inlet frequency (/I), the 
value of the temperature amplitude at a point down- 
stream depends on the Reynolds number (Re). As the 
Reynolds number increases, the temperature ampli- 
tude decay decreases. The higher the Reynolds num- 
ber (Re), the slower the decay in the temperature 
amplitude along the channel. 

(4) For turbulent flow, the influence of the modified 
Biot number is much stronger than that for laminar 
flow, since the thermal resistance inside the duct has 
been reduced compared to the cases of laminar flow. 

(5) For turbulent flow, when a* < 8.5 x 10e3, the 
heat stored inside the wall is dominant and the influ- 
ence of the a* is mote effective for small values of 
Bi(Bi < 10) ; while for the large values of Bi(Bi > lo), 
the heat carried by external convection and stored 
inside the wall are of the same order, the effect of the 
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a* is not so strong as that for the small value of Bi, 

but the difference for different a* is still observable. 
(6) For turbulent flow, it is very difficult to give the ,u 

similar applicable tables as in laminar flow, because 
of the involvement of the dependance on the Reynolds 
numbers (Re), the effects of the modified Biot numbers 1 * 
(Bi), and the fluid-to-wall thermal capacitance ratios 
(a*) on the variation of temperature amplitude, which 
become more complicated than that in laminar flow. 

transfer in laminar flow with a periodic variation of inlet 
temperature, Int J. Heat Mass Transfer 34, 2581-2592 
(1991). 
W. Li, Experimental and theoretical investigation of 
unsteady forced convection in ducts, Ph. D. Dissertation, 
University of Miami, Coral Gables, Florida (1990). 
ASME Standard, MCF-3M, Measurement of fluid flow 
in pipe using orifice, nozzle and venturi (1984). 

APPENDIX 

We may empirically express the fully developed turbulent 
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r+ = u*A eBut -I-Bu’- ‘(Bu+)’ 
2 

- i(BU+)‘- ;pty 1 , (Al) 

where 

a+ = u/u,, r+ = q/u, r = I -y, 

and u, = JTuip, (A2) 

r is the coordinate from the wall towards the centerline of 
the duct and u, is the shear velocity. 

For turbulent convective heat transfer, it is essential to 
know the eddy viscosity. E,, and eddy diffusivity, a,. A two- 
layer model of eddy viscosity is used. The empirical 
expression of eddy viscosity is as follows according to Spald- 
ing [7] : 

%I - = AB @“’ -I -Bu’- ;(Bu+):- ;(Bu+)’ . 
1 1 

(A31 

where A and B are constants which are equal to 0.1108 and 
0.4, respectively. 

The turbulent Prandtl number Pr, is defined as the ratio 
of eddy viscosity and eddy diffusivity, as 

Pr 
’ 
= ey viscosity (a,) 

eddy diffusivity (a,)’ 
(A4) 

According to the experiments performed by Larson and 
Yerazunis [8], Pr, is assumed to be a constant, and is taken 
as Pr, = 0.86 for the fluid with Pr = 0.7. 


